
Thermochimic~ Acta, 156 (1989) 291-297 
Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands 

291 

THE INFLUENCE OF SAMPLE MASS, HEATING RATE AND HEAT 
TRANSFER COEFFICIENT ON THE FORM OF DSC CURVES 

J.C. VAN MILTENBURG 

Chemical Thermodynamics Group, State University of Utrecht, Padualaan 8, 
3584 CH Utrecht (The NetherIan&) 

M.A. CUEVAS-DIARTE 

~n~uers~tat de Barcelone Facult~t de Geo~~giu Marti i Framed, s/n E~8~~8, 
Barcelona (Spain) 

(Received 1 May 1989) 

ABSTRACT 

Several methods of correcting experimental curves in differeuti~ scanning calorimetry are 
in use. A simplified model to which experimental data can be fitted is proposed. From this 
model it follows that the width of a melting peak of a pure compound depends on the heating 
rate and on the mass of the sample by a square-root relation 

INTRODUCTION 

Recently, several articles [l-5] have been published on the infhtence of 
sample mass and heating rate on the form of melting curves in differential 
scanning calorimetry (DSC) and differential thermal analysis (DTA). The 
purpose of the studies was to correct the experimental curves for the 
influence of sample mass and heating rate in order to obtain the actual 
sample temperature during a phase transition. Such a correction is needed to 
enable measurement of the impurity of the sample or, in the case of the 
study of binary phase diagrams, to find the liquidus point (end point of the 
melting process). 

The present authors discuss the ideal curves in power-compensated dif- 
ferential scanning calorimetry, excluding effects which tend to deform the 
experimental curves, such as sample form (powder, molten or tablet), 
non-homogeneous temperature in the sample cup, and varying contact 
between the sample cup and the sample cup holder. hopefully, these 
considerations will help to make a framework in which experimental data 
can be fitted. 
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MODELLING OF THE DSC 

The simplified experimental set-up is shown in Fig. 1. In the DSC 
experiment both holders are heated at the same rate. The surplus in energy 
needed for the sample is recorded as the measuring signal, usually as a 
function of the temperature of the sample cup holder. Heating both holders 
at the same speed can be achieved electronically by using a proportional 
regulation system with a very high amplification factor, i.e. 

W= PdT 

where W is the measuring signal in W, P is a proportional factor and dT is 
the temperature difference between the holders. 

The amplification factor of the amplifier used to detect the temperature 
difference multiplied by P determines the total proportional action of the 
regulation system. This value can be made so high (before oscillation starts) 
that the remaining dT can be neglected compared to the temperature 
differences which occur between the sample cup holder and the sample cup. 
For the remainder of this article it is assumed that the sample cup holder 
and the reference cup holder are always at the same temperature and that 
the difference in power needed to achieve this is recorded as the measuring 
signal. Perhaps it is useful to remark here that PI or PID regulation systems 
cannot be used in this case. It would be perfectly possible to heat both 
holders at the same speed using these regulation systems, but when a phase 
transition takes place in the sample cup the integral part of the regulation 
system increases and should decrease after the phase transition, thus leading 
to symmetrical (about the base line) curves. 

The response of the instrument can be reduced to a simple mathematical 
model assuming that: (1) the holders are always at the same temperature; (2) 
the system is symmetrical; (3) the sample cup and the reference cup are 
equal in mass; and (4) the sample cup and the sample can be considered as 
one thermal part (in other words, they always have the same temperature). 
These conditions lead to the model shown in Fig. 2. 

The more complicated case which arises when one divides the calorimeter 
into several regions of the same temperature as is needed in DTA experi- 
ments was described by Sarge et al. [l]. They used a numeric method 
(method of Runge-Kutta) to solve the resulting equations. 

f b 

Fig. 1. Schematic drawing of a DSC. a and b, holders; c, heaters; d, thermometers; e, sample 
cup; f, reference cup. 
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Th=To+q.i 

Fig. 2. Simplified model of a DSC. 

The temperature of the sample holder can be given by 

Th = T, + LJt (1) 

where Th is the temperature of the sample holder, TO is the starting 
temperature; q is the heating rate in K s-i, and t = time in seconds. 

The heat flow to the sample can be given by 

IV= K(T, - T,) (2) 

where W is the heat flow in watts, K is the heat transfer coefficient in W 
K-‘, and T, is the temperature of the sample and the sample cup. 

With a heat capacity of the sample of mC, for m grams of sample, this 
leads to 

dT, XrnC, = w 

Combining eqns. (l), (2) and (3) gives the well known equation 

~mC‘=K(T,- To-qt) 

(3) 

Assuming at t = 0 that T, = Th = To, the solution of this differential 
equation is 

T, = To + qt - JEg$ _ e-wmCs) 

This equation holds for the start of the curve; when t increases the 
exponential part becomes negligible and 

qmG 
T,=To+qt-K 

W = qmC, (7) 

This equation is used for measuring the heat capacity of the sample, 
assuming that the sample cup and the reference cup are equal in weight. In 
practice, a run is first made with two empty cups and this run is subtracted 
from the measurement with the sample. 

For a first order phase transition the situation is summarized in Fig. 3. 
The melting starts at t, and is completed at t,. During this period the 
temperature of the sample and the sample cup remains constant. This is an 
idealization; the temperature of the sample cup may change. The energy 
supplied to the sample in the period t, - t, is given by the integral over the 
surface ABCD (see Fig. 3). The line AB corresponds to the effect which 
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w(J.s-‘) 

b b - time(s) 

Fig. 3. Curve of a first order phase transition. 

would be measured under identical circumstances if the sample holder was 
empty. The surface ABCD consists of a triangle and a square, and it follows 
that 

m dH=OS(t,-t,)h+(t,-t,)q(C+mC,) (8) 

in which dH is the enthalpy of transition, C is the heat capacity of the 
sample cup, and h is the heat flow to the sample with respect to the base 
line at t = t,. 

At t,, the sample and the sample cup lag behind in temperature to the 
sample holder. This temperature difference is q( t, - t,,) and the correspond- 
ing surplus in heat flow at t, is 

h=Kq(t,-t,) (9) 

Substituting eqn. (9) into eqn. (8) and rearranging, using dt = (t, - t,,), 
leads to 

OSqK dt2 + q(C + MC,) dt - m dH = 0 (10) 

This follows closely the derivation given by Gray [6]. Solving this equa- 
tion leads to 

dt= -q(C+mC,)+ [q2(C+mCs)2+2Kqm dH]’ 

Kq 

Transforming the time scale to a temperature scale by multiplying by q gives 

T, - Tb = 
-q(C+mC,)+ [q2(C+mCs)2+2Kqm dH]’ 

K 02) 

This equation gave us the opportunity to look at the influence of q 
(heating rate) and m (sample mass) on the shape of a melting peak. The heat 
transfer coefficient K cannot be varied freely. 

We used a DSC 2 from Perkin-Elmer. From a measurement with indium 
the constants summarized in Table 1 were found. The heat transfer coeffi- 
cient K was calculated from the slope of the line CD (Fig. 3) using eqn. (9). 
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TABLE 1 

Measured and calculated values for eq. (12) 

Sample holder aluminium 

Mass sample holder 0.020 (g) 

C 0.0188 (J K-‘) 

Mass indium 4.81 x 1O-3 (g) 

dH 28.5 (J g-r) 

me, 0.00105 (J K-l) 

4 5.2x 1O-3 (K s-‘) 
K 1.6x10-* (WK-‘) 

‘, - Tb 0.31 (K) 

- 

A consideration of the relative importance of each term led to the 
following approximation for eqn. (12) 

T _ T = (Wm dd 
e b 

K = ( 2q\dff)i 03) 

The width of the peak is dependent on the mass of sample and on the 
heating rate by a square-root relationship. In Table 2, the measured and 
calculated values of T, - Tb using 4.81 mg of indium are compared. From 
this table, it can be seen that with heating rates below 8.33 x lo-* K s-l (5 
K mm-‘) eqn. (13) holds very well. 

The return to the base line (line DE in Figure 3 is an exponential curve 
with the factor e-Kt/(C+mC~). In this example, this is e-0.806t. This is a fast 
declining function. In about 5 s the heat effect has fallen back to within one 
per cent of its value at t,. This is one of the merits of the DSC technique; it 
leads to sharp transitions compared with the DTA method. 

In the collaboration between Bordeaux, Barcelona and Utrecht 
(Courchinoux et al. [2]) a method called shape factor was proposed in order 
to analyse the melting curves of mixtures. 

TABLE 2 

Measured and calculated values of T, - Tb for the DSC 2 using 4.81 g indium 

;K s-t) 

5.20x 1O-3 
1.04x 10-2 
2.08 x lo-* 
4.16x10-* 
8.33 x lo-* 

T, - Tb r, - Tb T, - Tb 
(K) (K) (K) 
Experimental Eqn. (12) Eqn. (13) 

0.31 0.29 0.30 
0.41 0.41 0.42 

0.57 0.57 0.60 
0.77 0.79 0.84 
1.08 1.09 1.19 
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w(J.s-‘) 

b b ‘1 - time (5) 

Fig. 4. Curve of a first order phase transition. The return to the base line is approximated by 
a straight line. 

To correct the end point of a transition the factor AT, = Tf - Tb is 
calculated from the melting curves of the pure compounds. Therefore, the 
exponential return to the base line is approximated by a straight line. This 
situation is given in Fig. 4. The shaded surfaces should be equal, which leads 
to 

hx0.5(t,-t,)=(C+mC,)q(t,-t,) 

Using eqn. (9) we find 

04) 

2( c + mc,) 
(b-b)= K 

T _ T = 2qw+ ma f e K 

Neglecting mC, in comparison to C gives 

w Tf-T,=K 

(15) 

(16) 

(17) 
This implies that Tf - T, does not depend much on the sample mass but 
mostly on the heating rate. The plot of Tf - T, and T, - Tb against sample 
mass should result in two parallel lines. This is in accordance with the results 
as given by Courchinoux [7,8]. 

DISCUSSION 

From Table 2, it follows that the model holds very well in the case of 
fusion of indium. Organic compounds such as para-dichlorobenzene and 
naphthalene give less ideal curves and lower values for K (about 1 X lop2 
W K-l), implying that a more sophisticated model might be needed. O’Neill 
[9] proposed a model which takes into account the changing liquid-solid 
interface during the melting process. It is questionable, however, that a more 
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complicated model does improve the results. The heat contact between the 
sample holder and the sample cup does vary considerably; we measured 
values using indium between 1.6 X lo-* and 2 X lo-* W IC’. Therefore, 
we propose to use eqn. (13) as a function to which experimental data can be 
fitted. Temperature correction can then be made using eqn. (2). 
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